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Abstract 

Recent attention has been given to the proper treatment of the planar traction-free surfaces 

which typically bound a computational box in three-dimensional dislocation dynamics. This 

paper presents an alternative to the use of the finite-element method for this purpose. Here, to 

annul the tractions produced by a sub-surface dislocation segment on a finite-area free surface S, 

a combination of an image dislocation segment, and a distribution of N prismatic rectangular 

Volterra dislocation loops meshing S is utilized. The image dislocation segment, with the proper 

sign selection of the Burgers vector components, annuls the shear stresses, and the normal stress 

component is annulled discretely at N collocation points representing the centers of the loops. 

The unknowns in this problem are the magnitudes of the N Burgers vectors for the loops. Once 

these are determined, one can back calculate the Peach-Koehler force acting on the sub-surface 

segment and representing the effect of the free surface. As expected, the accuracy of the method 

improves as the loops continuously decrease in size. 

1. Introduction 

Dislocation dynamics, or DD, has recently emerged as a powerful method for predicting the 

plastic deformation of defected crystalline materials [ 1,2]. DD deals with the interaction of 
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three-dimensional dislocation curves located in a simulation box (representing a single crystal) 

and approximated as a set of connected dislocation line segments each. The self-stress of a 

straight-line dislocation segment in an infinite medium can be found from the literature [3,4]. 

This self-stress represents the main ingredient in dislocation dynamics codes, needed in order to 

capture the mutual interaction of the segments. 

When the dislocation segments are close to external free surfaces (e.g. the computational 

domain boundaries), the self-stress formula used previously is no longer valid by itself and 

should instead be augmented with auxiliary terms. Such terms arise, e.g., from image stresses 

when dealing with infinitely long dislocation lines near a free suface. These terms represent the 

effect of the free surface on the nearby dislocation segment. Thus, current implementations of 

dislocation dynamics are not completely accurate since they consider the dislocations to lie in an 

infinite medium. Instead, the effect of a finite domain, through the computational cell surfaces, 

needs to be examined. 

The objective of this study thus is to rigorously treat the traction-fiee condition imposed on 

the boundaries of a DD box. The study provides for theoretical and numerical treatments of the 

condition. It is based on image stress analysis (from dislocation theory) and derives from crack 

theory. Its approach can be categorized under "generalized image stress analysis," which here 
L 

refers to the careful distribution of dislocation entities (lines, loops, etc., that are sources of 

stress), at or near the boundary of interest such that the zero-traction condition is satisfied. The 

proper treatment of this boundary condition should improve the DD prediction of macroscopic 

material behavior, and eliminate any hidden or not readily apparent artifact or bias in the results. 

With regard to the effect of free surfaces on sub-surface dislocations, several researchers 

have investigated different aspects of the problem. Initially, [5] determined the elastic fields of a 
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dislocation half-line terminating at a free surface of an isotropic elastic body for any angle of 

incidence and Burgers vector. The displacements of an infinitesimal dislocation loop of arbitrary 

orientation, and residing in a semi-infinite isotropic elastic medium, were obtained by [6] .  The 

elastic field of a closed finite, or semi-infinite, dislocation loop can thus be obtained by means of 

area integration using the results for the infinitesimal loop. Using results from [6], [7,8] derived 

the stress fields of a dislocation half-line (and segment) parallel and perpendicular to a free 

surface of a semi-infinite isotropic medium. Concurrently with the works of [7,8], [9] found the 

displacement field associated with an angular dislocation in an elastic isotropic half space. For a 

dislocation half-line in an isotropic half-space, [lo] have obtained closed form solutions for the 

stresses, which can be used to find the stresses of a line segment. Finally, [l 11 developed an 

integral expression for the case of a dislocation terminating at the free surface of an anisotropic 

half-space. They solved the problem using a planar fan-shaped distribution of infinite straight 

dislocations. This idea is similar to solving crack problems by the proper distribution of stress 

sources &e. dislocation entities). 

2. Treatment of the Traction-Free Surface Problem 

Consider Fig. 1 below showing a sub-surface dislocation segment A,B+. Here, b is the 

Burgers vector of the segment and t, is its line sense. The condition of zero traction requires that 

T= on = 0 at any surface point, P, which translates to oxr = 0, = = 0 .  To annul the shear 

stresses on the plane, one can place a mirror segment A2Bz such that b:B2 = by ,bxz A B  2 = -b,A,B, , 

. This can be proven after some careful analysis of the segments‘ stress fields and b:B2 =-by””’ 

(available in [3,4]). This image solution, however, does not annul the 0, component of stress. In 

fact the contributions of each segment at the surface points is equal and additive. 
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Consider area S in Fig. 1 on which the annulment of 0, is desired. This finite area represents 

a portion of the parent surface area. Let's further subdivide S into N rectangular surface elements 

representing prismatic dislocation loops with unknown Burgers vectors. One such loop, Loop i, 

is shown in Fig. 1, illustrating its line sense and Burgers vector with respect to a body-fixed 

coordinate system x ' y Y  The loop center, in global coordinates, is (x> ,yk ,&)  . We propose to 

annul the 0, component in a discrete fashion by requiring it to be identically zero at the centers 

of these elements. This of course does not necessarily ensure its annulment at other surface 

points, Therefore this technique is numerical and approximate in nature. More accuracy can be 

attained by further subdividing S into an increasing number of elements, Le. using smaller loops, 

which will cause the enforcement of the boundary condition at more collocation points (covering 

the whole surface in the limit). 

The problem here thus reduces to finding the set of loops' Burgers vectors that will 

collectively satisfy the boundary condition at the collocation points. Once these are solved for, 

the Peach-Koehler force acting on the sub-surface segment will be due to externally applied 

stresses, the stress fields of the mirror reflected segment and the surface prismatic loops. The 

stress field of a prismatic loop can typically be derived from the Peach-Koehler equation. This 

equation expresses the stress field of an arbitrarily curved dislocation in terms of a line integral 

[3]. Indeed, we have obtained such a stress field as just suggested and exclude it here due to its 

length. The reason for picking loops of prismatic character is that these loops have a non- 

vanishing o,, component as well as null shear stresses in their plane. Note that the above- 

proposed method is in harmony with the idea of "generalized image stress analysis" discussed 

earlier. 

- 
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Based on the above, the annulment of the 0, component of stress at the center of any loop, i, 

can be stated as: 

,i . . . N  

, where 01 is the stress from Loopj, and 0 2 ~ ~  is the stress from segment AIBl. Note that the 

unknown in each of the loop stress terms in (1) is the magnitude of the prismatic Burgers vector 

(bz) of that loop. In each of these terms b, pre-multiplies another term or kernel K(x,y). Hence, 

for each collocation point i, Eq. (1) corresponds to a linear relation between N unknown loop b, 

magnitudes. Applying (1) N times at the centers of all loops produces a set on N linear algebraic 

equations with N unknowns to solve for. 

Note that the above devised numerical scheme is self-consistent geometrically, numerically, 

and within the context of dislocation theory. Note also that the extent of area S upon which the 

boundary condition is enforced is a problem parameter and can be extended almost indefinitely. 

Finally, note that the choice of dislocation loops to annul any undesirable surface tractions is 

advantageous because the stress field of such loops decays rapidly as I@. Therefore, the loop 

distribution on one free surface, say corresponding to one of the boundaries of a finite cubic 

computational cell, will have little effect on the tractions on other nearby perpendicularly 

c 

oriented surfaces. Therefore, an assumption of uncoupling in the image treatment of the different 

surface will not be far fetched here. 

Consider Eq. (1) again. It can be rewritten as: 

, knowing that the contributions of segments AlBl and A2B2 are equal. Now, recognizing that 
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03 evaluated in the S plane is a function of x and y only, (2) can be written: 

4 4 =-f(~&,&) i = l . * * N , ( 3 )  
N 

center of h p  i 
c < K ( X $  - 6, y; - &) = -2 aa I 
j=1 

The oZz component of a square prismatic loop of half-side a centered at the 01 -gin of the xyz 

system and evaluated in the loop plane &e. z-0) simplifies to: 

Here, K(x,y) is the sought after kernel in Eq. (3) above. 

From (3) above, one can see that we have an N-N system of linear algebraic equations: 

, where the [A] matrix contains interacting kernels and { C )  is like a forcing vector containing the 

negatives off(x,y). This system can be solved using the solver of choice. 

Results and Discussion 

Once the Burgers vectors of the surface loops are known, one can compute the Peach- 

Koehler force (PKF) on a sub-surface segment. The PKF acting on the segment tends to pull it 

towards the surface to minimize the crystal energy. Due to elasticity theory limits, the force on a 

segment can only be calculated to within a core distance or depth (Le. z-depth = 0.5b-4b) from 

the surface. This is not a serious limitation and is in harmony with other DD calculations which 

take this limitation into account and deal with it similarly. 

Comparisons between our solution for a horizontal sub-surface segment have been made with 

the solution of [7] for a half-plane. At the outset, one needs to recognize that the two solutions 
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will not match due to area size differences. However, if one chooses a large enough area, and a 

small enough segment away from the area comers and close to the finite plane, one should 

expects a good resemblance between the two solutions. In all of the results below, the segment 

length is equal to 1006 (where b is the magnitude of the crystal's Burgers vector), the shear 

modulus is 42.25GPa and the Poisson ratio is 0.383. 

Consider a horizontal segment, AIBI, at a depth of 10006, lying parallel to the x-axis, and 

having a normalized Burgers vector b=(l/D3,1/D3,1/03).  The coordinates of AI and B1 are 

(1 OOb,O,-10006) and (O,O,-1 OOOb), respectively. The finite surface area represents a rectangle 

with a side of 20,0006. If one compares the on, ow, and 0, components using the above method 

with the method of [7], one gets Figs. 2 and 3. In these plots the evaluation points are chosen to 

lie at a depth of 400b parallel to the x-axis withy = 0. In Fig. 2, the finite area was divided into 

30030 intervals totaling 900 loops. The surface loop density is increased in Fig. 3 to 50050 

(2500 loops) 

In Fig. 2, the stresses obtained by the two methods follow similar trends but noticeably differ 

in value, perhaps due to the low loop density used in conjunction with the current solution. As 

the loop density increases to 50050 (Fig. 3), the two methods give almost identical results, at 

least for the oxx and cr, components. Increasing the meshing density further will enhance the 
. 

agreement between the 0, and o,, components and stabilize (the noted) difference in the 0, 

results. This difference is due to the different area sizes utilized in each of the methods, and the 

current solution will converge towards the half-plane solution as the conditions of the problem 

resemble more that of a half-plane problem. This can be attained for example if the dislocation 

segment gets closer to the surface while staying away from the edges of S. If one now instead 
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plots the variation oxy, o,, and oy in the x-direction, one would also get good agreement 

between the current solution and [7]. 

At a meshing density of 50x50 loops (Fig. 3), the average separation distance between the 

surface collocation points is roughly 400b. Incidentally, this is the same sub-surface depth 

chosen for the evaluation points in the figure. The reason for this coincidence can be explained 

by St. Venant's Principle in elasticity theory, which states that agreement between an exact 

solution and an approximate, but functionally equivalent, one at a boundary will be good for 

field points lying more than a "characteristic" distance away from the boundary. The 

characteristic distance in this case being the average separation distance between collocation 

points at which the boundary condition is enforced. 

Finally, some results from incorporating the above method into our DD code are exhibited. 

Here all six faces of the cubic cell are padded with rectangular surface loops and an interior 

segment is reflected off of all these surfaces. The PKF on the segment is the sum of the forces 

from all six faces. Fig. 4 shows stress-strain diagrams obtained from DD simulations for a cubic 

specimen 10,000b in size subjected to a shearing load at a rate of 10 sec-'. The solid curve 

represents a case of no surface loops &d the dashed line represents 40040 surface loops 

meshing. One can see that the surface effect acts to lower the saturation stress level in the stress- 

strain diagram. Here the source is initially away from the walls. As the Frank-Read source starts 

to emit dislocation loops or lines, they come into proximity with the surfaces at some point. Once 

the dislocation lines (or segments) are close to an exterior wall, an attraction force, pulling them 

towards the surface, further assists their glide. This force comes from the image stress analysis, 

i.e. from the proper treatment of the traction-free boundary condition. 
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Before ending it is important to note that a surface-piercing segment represents a special case 

of a sub-surface segment and hence can be treated using the above method, as long as the 

piercing point lies within a surface loop not touching a loop's edge. 
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Fig. 1 A schematic of sub-surface segment AlBl and its reflected image segment A2B2. Surface 
area S is divided into N rectangular elements representing prismatic dislocation loops (see inset). 
The traction-free boundary condition is imposed at the centers of the loops. 
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g. 2 Plots of the variation of on, o,, and ozz versus x at a depth of 400b and for y’0.  TK and 

MC indicate the current solution and the solution of [7], respectively. Here area S is square of 
size 20,000b and is divided into 30030 loops. The sub-surface segment is horizontal, lOOb in 
length, at a depth of 1 OOOb, and has three non-zero components of Burgers-vector. 
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Fig. 3 Plots of the variation of on, ow, and o,, versus x at a depth of 400b and for YO. TK and 
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Fig. 4 Stress-strain diagrams for a cubic computational cell of 10,000b in size subjected to a 
shearing rate of 10 sec-'. The solid curve represents a case of no surface loops (i.e. no treatment 
of the traction-free boundary condition) and the dashed line represents 40040 surface loops 
meshing. 




